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Thymidine-containing derivatives are some of the most exigent analogs of drug molecules. In this investigation, 
several 5ʹ-O-acyl thymidine derivatives (2–11) having different aliphatic and aromatic groups were employed for 
optimization, molecular docking, biological prediction, and physicochemical studies. Density functional theory (DFT) 
with B3LYP/3-21G was employed to demonstrate their thermochemical, atomic partial charge (APC), and molecular 
electrostatic potential (MEP) properties. Prediction of activity spectra for substances (PASS) revealed promising 
antibacterial, antiviral, and anti-carcinogenic activities of these thymidine derivatives compared to their antifungal 
activities. In support of this observation, their cytotoxic prediction and molecular docking studies were performed 
against FimH adhesin of Escherichia coli (PDB: 1TR7). The molecular docking studies exhibited that most of the 
molecules could bind to the near crucial catalytic binding site, Tyr48, Ile13, Ile52, Phe1, and Tyr137 of the lectin 
adhesin FimH, and the molecules were surrounded by other active site residues like Gln133, Asp47, Asn46, Asp54, 
Asn135, Asp140, and Ala6. Besides, these partially acylated thymidine derivatives were analyzed for their 
pharmacokinetic properties which revealed that the combination of in silico ADMET prediction and drug-likeness 
showed a promising pharmacokinetic profile. Overall, the present study might be useful for the development of 
thymidine-based potential antimicrobial drugs.    

Keywords: Thymidine; adhesin FimH; MEP; PASS; ADMET; DFT 

Abbreviations: DFT: density functional theory; ADMET: absorption, distribution, metabolism, elimination, toxicity, 
QM: quantum mechanical; LYP: Lee, Yang and Parr’s; MEP: molecular electrostatic potential; PASS: prediction of 
activity spectra for substances. 

INTRODUCTION 

Nucleoside antibiotics have been under 
investigation for many years [1]. Some of the most 
clinically effective antiviral agents currently in use 
are purine or pyrimidine nucleoside analogs [2]. 
Thymidine, structurally known as deoxythymidine 
(Figure 1) is a pyrimidine-based nucleoside that 
constitutes a major part of one of the four 
nucleosides in DNA and is listed as a chemical 
teratogen [3]. Modification of hydroxyl (-OH) 
group at 3՛ and 5՛ position improves the 
antimicrobial activity of thymidine derivatives and 
brings about some potential antimicrobial agents 
[4-6]. As a result of screening synthetic compounds 
for potential antimicrobial activity, a study reported 
that azidothymidine (AZT) has potent bactericidal 
in vitro activity against various members of the 
family Enterobacteriaceae [7]. Azidothymidine 
(AZT) is one of the most popular thymidine 
derivatives (antiviral drug) in which 3՛-hydroxyl    
(-OH) was modified by an azide group and is now 
used worldwide for the treatment of HIV infection 
[8]. AZT suppresses the mode of reverse 

transcription, a ticklish phase in the life cycle of a 
virus. Edoxudine is another thymidine-derived 
antiviral drug, strongly working against the herpes 
simplex virus [3]. Moreover, thymidine is used in 
cell biology to synchronize cells. Thymidine analog 
bromodeoxyuridine is often used for the detection 
of proliferating cells in living tissues. Thymidine is 
also catabolized to identify TP-expressing tumor 
xenografts [9]. Furthermore, after alteration of 
hydroxyl (-OH) group in nucleoside derivatives 
uridine and cytidine also have potential 
antimicrobial activity [10-17].  

Antagonists of the Escherichia coli type-1 
fimbrial adhesin FimH are recognized as attractive 
alternatives for antibiotic therapies and prophylaxes 
against acute and recurrent bacterial infections. 
Pyrimidine nucleosides are influential antimicrobial 
agents that act as a specific inhibitor of the 
dihydrofolate reductase of bacteria. Some recent 
computational studies reported that modified 
thymidine derivatives are also possessing 
significant thermodynamic stability and 
pharmacological properties [18]. Pathogenic E. coli 
adheres  via  the  FimH adhesin  at  the  tip  of  their  
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type-1 fimbriae to mannosylated glycan receptors 
on epithelial linings [19, 20]. The use of mannose-
based anti-adhesives for the selective inhibition of 
type 1-pilus mediated bacterial adhesion has 
attracted great interest for the non-antibiotic 
treatment of urinary tract [19, 21] and intestinal 
[20, 22, 23] infections caused by pathogenic E. coli. 
These bacteria can express an arsenal of multiple 
adhesins, lectins with a variable immunoglobulin 
fold, for their attachment to and colonization of 
host cells.  

Computational chemistry is a popular tool to 
predict the physicochemical, and biological 
properties of synthesized chemicals [24-28]. In this 
context, the potent antimicrobial efficacy of several 
thymidine derivatives 2–11 (Table 1) with various 
aliphatic and aromatic chains was investigated by 
molecular docking against lectin FimH of 
Escherichia coli (PDB: 1TR7) along with the 
prediction of activity spectra for substances 
(PASS). In addition, attempts were taken to 
optimize the acylated thymidine derivatives to 
predict their physicochemical and thermochemical 
behavior based on DFT (B3LYP/3-21G) approach 
with cytotoxicity. Finally, designed thymidine 
derivatives were analyzed for their pharmacokinetic 
properties which revealed that the combination of 
in silico ADMET prediction, and drug-likeness 
calculation gave a promising pharmacokinetic 
profile. Hence, this research work scintillates on the 
development of antimicrobial lead molecules from 
thymidine derivatives against lectin FimH in silico 
tools and studies their pharmacokinetic and toxicity 
properties.  

 
Figure 1. Chemical structure (A) and optimized 

molecular structure (B) of thymidine. 

EXPERIMENTAL 

Materials and methods 

Molecular docking has become an increasingly 
important tool for drug discovery to predict drug 
interactions with receptor proteins. The blind 
docking method demonstrates a search throughout 
the whole surface of the protein molecule for 
binding sites. The following software was used in 
the present study: i) Gaussian 09, ii) AutoDock 

4.2.6, iii) Swiss-Pdb 4.1.0, iv) Python 3.8.2, v) 
Discovery Studio 3.5, vi) PyMOL 2.3, and vii) 
LigPlot þ v.2.2. 

Computational Details 

Optimization of thymidine derivatives by DFT 

In computational drug design study, quantum 
mechanical (QM) methods have gained attention on 
the calculation of thermodynamic properties, 
molecular orbital features, dipole moment, as well 
as interpretation of different types of interactions 
[29]. Molecular geometry optimization and further 
modification of all thymidine derivatives were 
carried out using the Gaussian 09 program [29]. 
Density functional theory (DFT) with Beck’s (B) 
[30] three-parameter hybrid model, Lee, Yang, and 
Parr’s (LYP) [31] correlation functional under 3-
21G basis set was employed to optimize and predict 
their thermochemical properties. Molecular weight, 
heat capacity, entropy, free energy, atomic partial 
charge, and molecular electrostatic potential were 
calculated for all the derivatives.  

PASS prediction 

Web-based prediction of activity spectra for 
substances (PASS) (http://www.pharmaexpert.ru 
/PASSonline/index.php) was employed for the 
prediction of the biological spectrum of these 
thymidine esters [32]. Firstly, structures of the 
thymidine derivatives were drawn and converted 
into their smiles formats by using SwissADME free 
web tools (http://www.swissadme.ch), which were 
used to predict the biological spectrum using PASS 
online software. This program is designed to 
anticipate more than 4000 forms of biological 
activity including drug and non-drug actions and 
can be used to identify the most probable targets 
with 90% accuracy. PASS results are expressed as 
Pa (probability for active compound) and Pi 
(probability for inactive compound). Having 
probabilities, the Pa and Pi values vary from 0.000 
to 1.000, and in general, Pa + Pi ≠ 1, since these 
probabilities are calculated freely. The activities 
with Pa > Pi are only considered as possible for a 
particular drug. The PASS prediction results were 
interpreted and used flexibly, viz. (i) when Pa > 0.7, 
the chance to find the activity experimentally is 
high, (ii) if 0.5 < Pa < 0.7, the possibility to search 
the activity experimentally is low, but the 
compound is probably not so similar to known 
pharmaceutical agents, and (iii) if Pa < 0.5, the 
feasibility to find the activity experimentally is 
lower, but with a chance to find a structurally 
similar pharmaceutical agent. So, the prediction of 

http://www.swissadme.ch/
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the activity of the spectrum of a drug is known as 
its intrinsic property. 

Protein preparation and visualization 

The 3D crystal structure of lectin FimH of 
Escherichia coli (PDB: 1TR7) was retrieved in pdb 
format from the protein data bank [33]. All hetero 
atoms and water molecules were removed using 
PyMol (version 1.3) software packages [34]. Swiss-
Pdb viewer software (version 4.1.0) was employed 
for energy minimization of the protein [35]. Then 
optimized thymidine ligands were subjected to 
molecular docking study against E. coli (1TR7) 
(Figure 2). In fine, molecular docking simulation 
was rendered by PyRx software (version 0.8) [36] 
considering the protein as a macromolecule and the 
drug as a ligand. AutodockVina was employed for 
docking analysis, and AutoDock Tools (ADT) of 
the MGL software package was used to convert pdb 
into pdbqt format to input protein and ligands. The 
size of the grid box in AutoDockVina was kept at 
46.9741, 34.6094, and 41.4160 Å for X, Y, Z 
directions, respectively. After the completion of 

docking, both the macromolecule and ligand 
structures were saved in pdbqt format needed by 
Accelrys Discovery Studio (version 4.1) to explore 
and visualize the docking result and search the 
nonbonding interactions between ligands and amino 
acid residues of receptor protein [37]. In vitro, 
FimH tends to form amyloid-like aggregates at pH 
3, but neither at pH 5, nor 7. Since 1TR7 has its 
crystal structure in a state that represents the 
pharmacological target for the development of new 
drugs, it was selected for computational studies. 
The validation was checked by PROCHECK online 
server and it gave 98.08 overall quality factors in 
ERRAT (http://www.ncbi.nlm.nih.gov/entrez 
/query.fcgi?cmd=Retrieve&db=PubMed&list_uids 
=8401235&dopt=Abstract), 96.23% score in 
VERIFY 3D (https://www.ncbi.nlm.nih.gov/ 
pubmed/1853201?dopt=Abstract). PDBsum online 
server was also used to check the validation of the 
main protease receptor with Ramachandran plot 
(Figure 3) which revealed that 88.07% residues 
were in the allowed region and no residues were 
missed. 

 
Figure 2. Binding pocket (A) and crystal structure (B) of 1TR7. 

 
Figure 3. Ramachandran plot for lectin FimH 1TR7. 

http://www.ncbi.nlm.nih.gov/entrez%20/query.fcgi?cmd=Retrieve&db=PubMed&list_uids%20=8401235&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez%20/query.fcgi?cmd=Retrieve&db=PubMed&list_uids%20=8401235&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez%20/query.fcgi?cmd=Retrieve&db=PubMed&list_uids%20=8401235&dopt=Abstract
https://www.ncbi.nlm.nih.gov/%20pubmed/1853201?dopt=Abstract
https://www.ncbi.nlm.nih.gov/%20pubmed/1853201?dopt=Abstract
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Docking validation protocol 

The docking validation was performed by 
extracting the co-crystallized ligand (DEG - butyl 
α-D-mannopyranoside) of the lectin FimH (PDB: 
1TR7) and re-docking it into the same position. The 
lowest energy pose obtained on re-docking and the 
co-crystallized ligands were superimposed using 
PyMOL 2.3, and its root means square deviation 
(RMSD) was calculated between these two 
superimposed ligands. To validate the docking 
process, the RMSD must be within a reliable range 
of 2 Å [38, 39]. It was done to enhance ligand 
enrichment, which is necessary to test the docking 
procedure. 

In silico pharmacokinetics ADMET and drug-like 
parameters prediction 

To point out potential drug molecules, the 
ADMET properties were determined for the 
preliminary prediction of the pharmacokinetic, 
physicochemical, and drug-like properties in the 
drug discovery process. In silico study suggests an 
indication to the accession of pharmacokinetic 
parameters (adsorption, distribution, metabolism, 
excretion, and toxicity, ADMET) [40], its 
absorption in the human intestine, percolation of 
the blood-brain barrier and the central nervous 
system. The metabolism indicates the chemical 
biotransformation of a drug by the body, total 
clearance of drugs and the toxicity levels of the 
molecules. The drug-likeliness of a molecule is 
expressed by Lipinski’s rule of five parameters 
(molecular weight <500 Da, no more than 5 
hydrogen bond donors, hydrogen bond acceptors 
should be less than 10 and log P should not be 
greater than 5). Lipinski’s rule of five properties 
was obtained from the SwissADME server 
(www.swissadme.ch/index.php) [41]. Prediction of 
the drug-likeness of the designed thymidine 
derivatives was also assessed by rule-based filters 
from Lipinski, Ghose, Veber, and Egan, and the 
synthetic accessibility difficulty scale was 1–10.  

RESULTS AND DISCUSSION 

Designed and optimized thymidine derivatives 

In the present study, ten thymidine derivatives 
were modified with different aliphatic and aromatic 
chains (2–11) (Table 1) and were subjected to a 
quantum chemical study to realize the mode of their 
thermochemical properties. Initially, partially 
acylated derivatives were predicted for biological 
activities using the PASS program. The observed 

activities were then rationalized by calculating their 
physicochemical (DFT method), cytotoxicity 
(predicted), molecular docking, and with the 
combination in silico ADMET and drug-likeness 
properties.  

Table 1. List of thymidine derivatives 2-11. 

Entry  Name of the compound Acyl groups 
1 Thymidine -- 
2 5´-O-

Propionylthymidine 
CH3CH2CO- 

3 5´-O- 
Butyrylthymidine 

CH3(CH2)2CO- 

4 5´-O-
Hexanoylthymidine 

CH3(CH2)4CO- 

5 5´-O-
Nonanoylthymidine 

CH3(CH2)7CO- 

6 5´-O-Lauroylthymidine CH3(CH2)10CO- 
7 5´-O-

Palmitoylthymidine 
CH3(CH2)14CO- 

8 5´-O-Stearoylthymidine CH3(CH2)16CO- 
9 5´-O-4-

Chlorobenzoylthymidine 
4-Cl.C6H4CO- 

10 5´-O-3-
Bromobenzoylthymidine 

3-Br.C6H4CO- 

11 5´-O-Tritylthymidine (C6H5)3C-    

Thermochemical study  

The spontaneous reaction and stability of a 
product was elucidated from the free energy and 
enthalpy values [42]. Highly negative values were 
more significant for thermal stability. In a quantum 
chemical study, dipole moment influences non-
bonded interactions of hydrogen bond formation 
smoothly. The binding property can also be 
improved by increasing of the dipole moment [43]. 
Free energy (G) is another important factor to 
display the interaction of binding partners, where a 
negative value is favorable for spontaneous binding 
and interaction. Greater negative values reveal 
better thermodynamic properties. Presences of a 
bulky acylating group suggesting the possible 
improvement of free energies are presented in 
Table 2. In this study, all thymidine derivatives 
possess a greater negative value for free energy 
than the parent thymidine, and hence, indicated that 
the insertion of the acyl group could improve 
interaction and binding of these molecules with 
different microbial enzymes. Due to these higher 
values (–1670.229 to –3774.042 Hartree), 
halobenzoyl derivatives 9–11 exhibited a better 
score against E. coli. Furthermore, the increased 
negative values of derivatives 2–8 suggested that 
these derivatives were thermodynamically more 
stable.  
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Table 2. Stoichiometry, molecular weight, heat capacity, entropy, and total free energy of thymidine derivatives. 

Entry Stoichiometry Formula weight 
(g/mol) 

Heat capacity 
(cal/mol-kelvin) 

Entropy 
(cal/mol-kelvin) 

Total free energy 
(Hartree) 

1 C10H14N2O5 242.230 59.701 125.981 -870.318 
2 C13H18N2O6 298.291 74.723 144.447 -1061.254 
3 C14H20N2O6 312.120 80.664 156.868 -1100.352 
4 C16H24N2O6 340.371 90.173 169.613 -1178.554 
5 C19H30N2O6 382.451 104.181 182.114 -1295.853 
6 C22H36N2O6 424.530 118.450 213.440 -1413.161 
7 C26H44N2O6 480.585 136.963 240.043 -1569.554 
8 C28H48N2O6 508.693 146.185 246.456 -1647.774 
9 C17H17N2O6Cl 380.780 88.157 168.941 -1670.229 

10 C17H17N2O6Br 425.231 87.893 171.081 -3774.042 
11 C29H28N2O5 484.540 119.760 200.099 -1598.771 

Table 3. Predicted biological activities of the thymidine derivatives using PASS software. 

Entry Biological activity 
 Antibacterial Antifungal Antiviral Anti-carcinogenic 

 Pa Pi Pa Pi Pa Pi Pa Pi 
1 0.432 0.024 0.240 0.112 0.806 0.004 0.806 0.005 
2 0.463 0.078 0.292 0.084 0.744 0.004 0.797 0.005 
3 0.413 0.027 0.300 0.081 0.737 0.004 0.829 0.004 
4 0.515 0.027 0.319 0.074 0.724 0.004 0.830 0.004 
5 0.515 0.027 0.319 0.074 0.724 0.004 0.830 0.004 
6 0.515 0.027 0.319 0.074 0.724 0.004 0.830 0.004 
7 0.515 0.027 0.319 0.074 0.724 0.004 0.830 0.004 
8 0.515 0.027 0.319 0.074 0.724 0.004 0.830 0.004 
9 0.360 0.040 0.258 0.102 0.657 0.005 0.622 0.012 
10 0.385 0.034 0.262 0.100 0.648 0.005 0.510 0.018 
11 0.348 0.084 0.762 0.011 0.776 0.004 0.659 0.010 

Another remarkable change observed was that 
with the increase of molecular weight, heat 
capacity, entropy, and free energy sharply increased 
for compounds 2 to 8 which have a long acyl chain. 
But fluctuations were found for the aromatic ring-
containing derivatives 9–11. In fine, all of these 
properties may contribute to show higher chemical 
activity in the drug-related chemical and 
biochemical fields. 

Computational evaluation of antimicrobial 
activities: PASS 

The PASS results were designated as Pa and Pi 
which are presented in Table 3. It was manifest 
from prediction Table 3, that thymidine derivatives 
2–11 showed 0.34 < Pa < 0.51 for antibacterial, 
0.29 < Pa < 0.76 for antifungal, 0.64 < Pa < 0.80 
for antiviral and 0.51 < Pa < 0.83 for anti-
carcinogenic activity. This expressly revealed that 
these molecules were more prone to viruses and 
bacteria as compared to fungal pathogens. 
However, attachment of additional aliphatic acyl 
chains (C-2 to C-18, compounds 2–8) increased the 
antibacterial activity (Pa ¼ 0.515) compared to 
thymidine (1, Pa ¼ 0.432), whereas attachment of 
chloro- and bromo-substituted benzoyl groups did 

not lead to reasonable improvement (derivatives 9–
11). The same scenario was observed for the 
antiviral activity where acyl chain derivatives 2–8 
revealed improved values than the halo-benzoyl 
derivatives 9 and 10. But compound 11 which has 
the tri-phenyl group exhibited the highest antiviral 
activity (Pa ¼ 0.776). We have also predicted the 
anti-carcinogenic property of these derivatives. 
Thus, PASS predication exhibited 0.51 < Pa < 0.83 
for anti-carcinogenic activity which indicated that 
the thymidine derivatives were more potent as anti-
carcinogenic agents than previous antimicrobial 
agents. Significantly, antibacterial, antiviral, and 
anti-carcinogenic properties of thymidine 
derivatives with saturated acyl chains (2–8) were 
found to be more promising than those of 
halobenzoyl and tri-phenyl derivatives (9–11) [44].  

Atomic partial charge 

The polarity of chemical bonds often indicates 
the structures and reactivity [45]. The dipole 
moment is just a vector, but it does not give the 
polarity of the molecule. Several methods have 
been suggested for assigning partial charges to the 
atoms of a molecule, including both quantum 
chemical and empirical schemes. Two different 
methods (Mulliken and NBO) have been utilized to 
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compute the partial charges of all drug atoms 
including both quantum chemical and empirical 
schemes [46]. They are the most recognized 
population analysis methods and have a significant 
contribution to the application of quantum chemical 
calculations to a molecular system because dipole 
moment and molecular polarizability are also 
related to atomic charges [47]. Here, all the 
hydrogen atoms showed a positive charge in both 
methods, and other electronegative atoms (N and 
O) negative charge in both methods as expected 
(Figure 4).  

Derivative 6, (C-1 and C-15) showed a greater 
positive charge due to the presence of highly 
electronegative oxygen (O-27, O-29, and O-31), 
nitrogen (N-7) atoms, and H-5 exhibited a higher 
positive value than another hydrogen because of the 
oxygen atom of the hydroxyl (-OH) group. 
Similarly, derivatives 7 (C-1, C-25, and C-40), 8 
(C-1, C-24 and, C-36), and 9, 10 (C-6 and C-13) 
displayed a positive charge in both methods due to 
the presence of oxygen atom of the carbonyl group 
and halogen atom (Br) in the aromatic ring. 

Molecular electrostatic potential (MEP) 

Molecular electrostatic potential (MEP) is 
globally preferred as a map of reactivity that 
reveals the most suitable region for organic 
molecules to perform electrophilic and nucleophilic 
reactions of charged point-like reagents [48]. It 
helps to explore the biological recognition process 
and hydrogen bonding interaction [49]. MEP 
counter map provides a simple way to predict how 
different geometry could interact. The MEP of the 
title compound was obtained based on the B3LYP 
with basis set 3-21G optimized result and is shown 
in Figure 5. The MEP is very useful in the study of 
molecular structure with physicochemical features 
relationship [50]. MEP was calculated to determine 
the reactive sites for electrophilic and nucleophilic 
attacks of the optimized structure of thymidine 1 
and its derivatives 2, 4, and 7. The different colors 
of the electrostatic potential indicate different 
values. The potentiality of the attacking zone 
decreases in the sequence: blue ˃ green ˃ yellow ˃ 
orange ˃ red. The maximum negative area is 
displayed by red color where electrophiles can 
easily attack and the maximum positive area is 
indicated by blue color which is suitable for 
nucleophilic attack. Moreover, the green color 
showed zero potential zones. 

 

 
Figure 4. Atomic partial charges of compounds 6 and 7. 
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Figure 5. Molecular electrostatic potential map of thymidine and its derivatives 2, 4, and 7. 

 
 

Figure 6. Re-docking pose with the RMSD value of 0.402 Å (red = original, green = docked). 
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Docking validation study 

To identify the ability of docking algorithms to 
determine the conformation of the protein-bound 
ligand, re-docking of the co-crystallized ligand was 
employed to validate the accuracy of the docking 
procedure. Figure 6 indicates the superimposed 
view between the docked ligand conformation and 
the co-crystallized ligand conformation and the 
RMSD value is 0.402 Ǻ. The complex was found to 
interact with the same amino acid residues 
compared to those reported in the present study. 
The bulky symmetric molecules could be 
exchanged in the binding site during docking, as is 
the case in this investigation; the RMSD would be 
at a very high level. On the contrary, the small 
compounds could gain low RMSD easily even 
when placed randomly. Some reported studies [51-
53] have suggested a new benchmark for the 
quality of docking poses based on visual inspection. 
For visual inspection, Figure 7 shows the 2D 
visualization of the interactions between a 
generated docking pose and the experimental ligand 
conformation. The results of this visual inspection 
showed the same interactions as in the experimental 
binding mode, as observed in Figure 7. This result 
revealed that only visual inspection is not a reliable 
parameter for the quality of docking poses for 
docking validation, and the use of visual inspection 
as a new reference is essential. These partially 
proved the efficacy and validity of the docking 
protocol. 

Molecular docking studies 

Estimation of the feasible binding geometries 
and interactions between ligand and the active site 
of proteins was obtained from molecular docking 
[54]. All selected molecules were subjected to 
docking into the same binding pocket of lectin 
FimH of E. coli (PDB: 1TR7) using similar 
optimized docking conditions to identify their 
binding mode. The results of the docking 
exploration showed that all thymidine derivatives, 
along with the parent molecule, gain binding 
affinities ranging from -5.8 to -6.9 kcal/mol. As 
shown in Table 4, all the derivatives 2–11 showed 
comparatively higher binding affinities compared to 
the parent drug, thymidine 1. These results 
indicated that modification of the –OH group, along 
with an aromatic ring or an aliphatic chain 
molecule improved the binding affinity, while the 

insertion of halo-benzoyl groups like -Cl and -Br, 
made some fickleness in binding affinities. 
However, modification with halogenated aromatic 
rings increased the binding affinity. The docked 
pose showed that the drug molecules bind within 
the active site of the E. coli (1TR7) macromolecular 
structure (Figure 7). Figures 8 and 9 show that 
thymidine derivatives 9, 10, and 11 (binding 
affinities -6.7, -6.9, and -6.7 kcal/mol, respectively) 
bind firmly through hydrophobic bonds with the 
catalytic binding site Tyr48, Ile52, Ala6, and Ile13, 
where these residues exhibited alkyl, pi-alkyl pi-
sigma and pi-pi stacked interaction. The pi-pi 
interaction revealed the tight binding with the 
active site. Besides, Gln133, Asn46, Asp47, 
Tyr137, and Phe1 which were the highly specific 
binding pocket of FimH were also found to form 
hydrogen and electrostatic bonds. It is evident from 
the structural contrast that compounds 9–11 have an 
additional aromatic (halogenated ring and tri-
phenyl ring) substituent in the parent structure, 
indicating a high density of electrons in the 
molecule leading to a comparatively higher binding 
affinity (6.7 to -6.9 kcal/mol). On the other hand, 
thymidine derivatives 2, 3, and 4 revealed three 
similar binding pockets with tyrosine gate Tyr48, 
Asn46, Asp47, and Pro49 through both hydrogen 
and hydrophobic bonds. These ligands were bonded 
in a deep and polar pocket at the N-terminal end of 
FimH, in which the amino acids Asn46, Asp47, 
Gln41, and Asn135 create a dense network of nine 
hydrogen bonds with each hydroxyl group of the 
ribose ring. In addition, Asn46 showed a closer 
distance of 1.831 Å for derivative 4. 

The derivatives 5–8, which were modified with 
a long aliphatic chain (nonanoyl, lauroyl, palmitoyl, 
and stearoyl), enhanced the binding affinities by 
specific recognition events at post-glycosidic 
linkage atomic positions two to three with Ile52 and 
Tyr48 of the tyrosine gate. Interestingly, these 
derivatives specifically bind through the hydrogen 
bond with the specific pocket Ile13, Ile52, Asn46, 
Asn135, Asp47, Asp54, and Gln133. Among all of 
these residues, Ile52 was found in a close 
interaction (1.770 Å). Besides, derivatives 9–11 
(along with Phe1) displayed the maximum π-alkyl, 
π-cation, and π- π interactions with the Tyr48 Ile52 
and Ile13 indicating a tight binding with the active 
site. 
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Table 4. Binding affinities and non-bonding interactions of thymidine and its derivatives. 

Entry Protein Binding affinity 
(kcal/mol) 

Bond  
category 

Residues  
in contact 

Interaction 
types 

Distance  
(Å) 

1 1TR7 -5.8 Hydrogen ASN135 H 2.387 
Hydrogen ASP140 H 2.549 
Hydrogen THR53 C 3.417 

Hydrophobic THR134 PS 3.621 
2 1TR7 -6.0 Hydrogen ASN135 H 2.168 

Hydrogen ASP47 H 2.406 
Hydrogen GLN41 H 2.911 
Hydrogen TYR48 H 2.140 

Hydrophobic ALA6 A 3.602 
Hydrophobic ALA6 PA 5.462 

3 1TR7 -6.1 Hydrogen ASP47 H 2.336 
Hydrogen TYR48 H 2.204 

Hydrophobic PRO49 A 4.583 
Hydrophobic PRO49 PA 4.863 
Hydrophobic PRO104 PA 5.223 

4 1TR7 -6.4 Hydrogen ASP47 H 2.725 
Hydrogen TYR48 H 2.920 
Hydrogen ASN46 H 1.831 

Hydrophobic LYS76 A 3.716 
Hydrophobic PRO49 PA 4.858 

5 1TR7 -6.5 Hydrogen 
Hydrogen 

ILE52 
ASN46 

H 
H 

1.951 
2.368 

   Hydrogen ASN46 H 2.447 
   Hydrogen ILE13 H 2.805 
   Hydrogen ASP54 H 1.898 
   Hydrogen GLN133 H 2.849 
   Hydrogen ASN135 H 2.431 
   Hydrophobic TYR48 PA 4.499 

6 1TR7 -6.5 Hydrogen ASP47 H 2.531 
   Hydrogen PRO49 H 4.926 
   Hydrogen SER39 H 2.914 
   Hydrophobic ASN46 PS 3.970 
   Hydrophobic ILE52 A 1.770 

7 1TR7 -6.6 Hydrogen ILE52 H 2.334 
   Hydrogen GLY79 H 2.630 
   Hydrogen ILE13 H 3.040 
   Hydrogen PRO104 H 1.832 
   Electrostatic ASP47 PAn 3.554 
   Hydrophobic ALA6 PA 5.286 

8 1TR7 -6.4 Hydrogen ILE52 H 2.996 
   Hydrogen TYR48 H 2.747 
   Hydrophobic ALA106 PA 5.445 

9 1TR7 -6.7 Hydrogen ASP47 H 1.875 
   Hydrogen SER39 C 3.716 
   Hydrophobic LYS101 A 4.696 
   Hydrophobic ILE13 A 4.050 
   Hydrophobic PHE1 A 4.553 
   Hydrophobic PRO102 PA 4.855 
   Hydrophobic ILE52 PA 5.458 

10 1TR7 -6.9 Hydrogen 
Electrostatic 

GLN133 
PHE1 

H 
PCa 

2.358 
4.219 

   Hydrophobic TYR48 PPS 3.883 
   Hydrophobic ILE52 A 3.848 
   Hydrophobic TYR48 PA 4.781 
   Hydrophobic ILE13 PA 5.277 

11 1TR7 -6.7 Hydrogen TYR137 H 2.009 
   Hydrogen ASN46 H 2.322 
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   Hydrogen THR40 H 2.212 
   Hydrogen GLN133 H 2.940 
   Hydrogen ASP47 PDH 3.069 
   Hydrophobic ILE13 PS 3.560 
   Hydrophobic ALA6 A 3.796 
   Hydrophobic ALA6 PA 5.423 

H = Conventional hydrogen bond; C = Carbon hydrogen bond; A= Alkyl; PA = Pi-alkyl; PAn = Pi-Anion; PCa = 
Pi-cation; PS = Pi-sigma; PPS = Pi-Pi stacked; PDH = Pi-donor hydrogen bond. 

 
Figure 7. Docked conformation of derivative 10 at inhibition bounding site of 1TR7 (a) and docked conformation of 

derivative 11 at inhibition bounding site of 1TR7 (b). 

 
Figure 8. Non-bonding interactions of compounds 9 and 10 with the amino acid residues of 1TR7 generated by 

Discovery Studio. 
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Figure 9. Two-dimensional LigPlot image of FimH complex generated by PDBsum. 

Figure 10. Hydrogen bond surface and hydrophobic surface of 1TR7 with compound 5 (a) and compound 9 (b). 

Recent studies reported that the Tyr48 is 
considered as the principal component of the PPS, 
responsible for the accessibility of small molecules 
to the active site. Binding affinity and binding 
specialty were improved in the case of 2, 4, 5, 6, 7, 
and 11 due to significant hydrogen bonding. It was 
observed that modifications of the –OH group of 
thymidine 1 enhanced the π-π interactions with the 
residues of the active site while increasing their 
polarity resulted in the formation of hydrogen 
bonding interactions. The most prominent H-bonds 
were obtained for the derivative 5, formed with 
Asp54, Gln133, Asn46, Ile13, and Asn133. 
Hydrogen bonds executed a vital function in 
shaping the specificity of ligand binding with the 
receptor, drug design in chemical and biological 
processes, molecular recognition, and biological 
activity [55]. The hydrogen bond surface of 
derivative 5 and the hydrophobic surface of 
derivative 9 are consequently represented in Figure 
10. We realize that the analyzed thymidine
derivatives were bound within some of the catalytic
binding sites such as isoleucines (Ile13 and Ile52),
Tyr48, Tyr137, Asp46, Asp54, Asp140, Asn46,

Asn135, Gln133, and Phe1 of the FimH, which is 
responsible for acute and recurrent bladder 
infections and chronic inflammatory bowel diseases 
such as Crohn’s disease. Among all the molecules, 
the inhibition activity of the derivative 10 was 
found to be the highest (-6.7 kcal/mol). The results 
were summarized into a set of structural changes to 
be used in FimH-targeted inhibitor design: 
thymidine derivatives gave an improved affinity 
and inhibitory potential; because of their relative 
flexibility combined with a favorable interaction 
with isoleucine-52 located in the middle of the 
tyrosine gate. 

Pharmacokinetic prediction and Lipinski’s rule 

In order to predict that the modified derivatives 
are potential drugs, we used the in silico 
pharmacokinetic parameters ADMET. The pkCSM 
online server [56] was employed to calculate in 
silico ADMET properties (Table 5). The 
absorbance value below 30% indicated poor 
absorbance; most of the compounds displayed a 
value above 60%, which revealed a good 
absorbance in the human intestine. 
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Table 5. In silico ADMET prediction of thymidine and its derivatives. 
Entry Absorption Distribution Metabolism Excretion Toxi 

city 

Intestinal 
absorption 
(human) 

VDss 
(human) 

BBB 
perme 
ability 

CNS 
perme 
ability 

Substrate Inhibitor Total Clearance AMES 
toxi 
city CYP 

2D6 3A4 1A2 2C19 2D6 3A4 

Numeric (% 
Absorbed) 

Numeric 
(Log 
L/kg) 

Numeric 
(Log 
BB) 

Numeric 
(Log PS) 

Categorical (Yes/No) 

Numeric (Log 
ml/min/kg) 

Catego
rical 
(Yes/ 
No) 

1 60.686 0.395 -0.982 -2.649 No Yes Yes Yes No Yes 0.729 No 
2 61.061 0.409 -0.950 -3.646 No Yes No Yes No Yes 1.446 No 
3 61.802 0.405 -0.380 -3.634 No Yes Yes Yes No Yes 1.454 No 
4 62.236 0.494 0.334 -2.615 No Yes Yes Yes No Yes 1.507 No 
5 63.364 0.459 0.323 -2.919 No Yes Yes Yes No Yes 1.585 No 
6 65.540 0.439 0.310 -2.884 No Yes Yes Yes No Yes 1.664 No 
7 68.304 0.465 0.327 -2.837 No Yes No Yes No Yes 1.357 No 
8 69.892 0.506 0.385 -2813 No Yes Yes Yes No Yes 1.388 No 
9 69.418 0.402 0.274 -2.147 No Yes Yes Yes No Yes -0.109 No 

10 69.227 0.409 0.305 -1.146 No Yes Yes Yes No Yes -0.071 No 
11 89.906 0.525 0.920 -1.676 No Yes Yes Yes No Yes 0.650 No 

It is evident that the volume of distribution 
(VDss) was supposed to be high if the value was 
higher than 0.45. In addition, blood-brain barrier 
(BBB) and central nervous system (CNS) 
permeability had standard values (>0.3 to < -1 log 
BB, and > -2 to < -3 log PS), respectively. A given 
compound with a log BB < -1 is poorly distributed 
to the brain, while that with log BB >0.3 means a 
potential to cross BBB and with log PS > -2 is 
considered to penetrate the CNS, while with log PS 
< -3 it is difficult to move in the CNS [57]. It was
observed that most of the compounds exhibited a
significant potential to cross the barriers except
derivatives 2, and 3. The enzymatic metabolism
ensures the chemical biotransformation of a
designed drug in the body, which plays a key role
in the transformation of drug compounds. In the
body, drugs produce several enzymatic metabolites
which play a role in catalyzing the reaction with
several drug concentrations [58]. It is essential to
consider the metabolism of drugs, which may show
several physicochemical and pharmacological
parameters. The cytochrome P450 (CYP450) plays
a major role in drug metabolism because of the
major liver enzyme system involved in phase 1
metabolism. Some selective CYP genes of CYP1,
CYP2, CYP3, and CYP4 families were found to be
involved in drug metabolism, with CYP (1A2,
2C19, 2D6, and 3A4) causing the biotransformation
of more than 90% of drugs undergoing phase I
metabolism.  Therefore,   among   these   members,

CYP3A4 is the most important inhibition in this 
study [59]. All designed derivatives were found to 
be the substrate and the inhibitor of CYP3A4. 
Clearance is a constant that indicates the 
relationship between drug concentration in the body 
and the rate of elimination of the drug. Therefore, 
all modified derivatives showed a somewhat high 
value but were still acceptable in the persistence of 
the drug in the body. Moreover, it is essential to test 
whether the calculated derivatives are non-toxic 
because this plays a critical role in the selection of 
drugs. All the derivatives we designed are non-
toxic. Overall, derivatives 4–11 have better in silico 
pharmacokinetic properties. 

Generally, drug-likeness is evaluated using 
Lipinski's rule of five [60]. As a matter of principle, 
an orally active drug should have no more than one 
interruption of the following conditions: (1) no 
more than five hydrogen bond donors, (2) no more 
than ten hydrogen bond acceptor, (3) molecular 
mass of less than 500 Da, (4) an octanol-water 
partition coefficient of not more than five, and (5) 
molar refractivity <140. If two or more of the 
guidelines are disrupted, reduced absorption can be 
estimated. All of the thymidine derivatives did not 
violate any of Lipinski's rule of five (Tables 6 and 
7). However, topological polar surface area (TPSA) 
is a contributing factor for oral absorption and 
blood-brain barrier permeation capacity and the 
screened drug-likeness of a molecule should have 
TPSA between 20 and 130 Å². The SwissADME 
web tool prediction ravels that only derivative 11 
violates this TPSA standard and all others ligands 
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are anticipated to be orally bioavailable. In 
addition, Pan-assay interference derivatives 
(PAINS) revealed no violation with these 
thymidine derivatives. PAINS are chemical 
compounds that often give false-positive results in 
high-throughput screens. PAINS tend to react 
nonspecifically with numerous biological targets 

rather than specifically affecting one desired target. 
The derivatives designed were evaluated for their 
synthetic accessibility, the synthetic accessibility 
values for all derivatives designed are about 3 to 5, 
therefore, they are easy to synthesize. In fine, the 
new compounds 2–4 and 9–11 respect all drug-
likeness rules. 

Table 6.  Drug-likeness prediction of thymidine and its derivatives. 

Entry Molar Refractivity 
(Å) 

Log Po/w 
(XLOGP3) 

NRB NHA NHD TPSA 
(Å²) 

Csp3 

1 58.070 -1.510 2 5 3 104.550 0.601 
2 72.621 0.391 5 6 2 110.620 0.620 
3 77.422 1.874 6 6 2 110.620 0.640 
4 87.044 1.940 8 6 2 110.620 0.691 
5 101.460 3.322 11 6 2 110.620 0.744 
6 115.882 4.954 14 6 2 110.620 0.772 
7 135.119 7.110 18 6 2 110.620 0.814 
8 144.722 8.202 20 6 2 110.620 0.821 
9 92.720 1.755 5 6 2 110.620 0.350 
10 95.412 1.814 5 6 2 110.620 0.350 
11 93.556 3.491 7 5 2 136.151 0.244 

Table 7. Drug-likeness prediction of the thymidine esters basing on Lipinski, Muegge, Veber, Egan, Ghose, and their 
synthetic accessibility. 

Entry Lipinski Muegge Veber Egan Ghose Synthetic 
accessibility 

PAINS 
alert 

1 Yes Yes Yes Yes Yes 3.641 0 
2 Yes Yes Yes Yes Yes 3.960 0 
3 Yes Yes Yes Yes Yes 4.064 0 
4 Yes Yes Yes Yes Yes 4.281 0 
5 Yes Yes No Yes Yes 4.625 0 
6 Yes Yes No Yes Yes 4.972 0 
7 Yes No Yes Yes No 5.454 0 
8 Yes No No Yes No 5.701 0 
9 Yes Yes Yes Yes Yes 4.025 0 
10 Yes Yes Yes Yes Yes 4.106 0 
11 Yes Yes Yes Yes Yes 5.040 0 

Table 8. Predicted cytotoxic activity of the thymidine derivatives. 

Entry 
Cancer cell line prediction result 

Blood (Leukemia) Lung (Carcinoma) 

Pa Pi Pa Pi 
1 0.640 0.007 0.569 0.024 
2 - - 0.502 0.016 
3 0.515 0.013 0.570 0.024 
4 0.505 0.014 0.568 0.024 
5 0.505 0.014 0.568 0.024 
6 0.505 0.014 0.568 0.024 
7 0.505 0.014 0.568 0.024 
8 0.505 0.014 0.568 0.024 
9 - - 0.503 0.048 

10 - - - - 
11 0.522 0.013 0.523 0.039 
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Cytotoxic prediction 

Web-based PASS was used to predict the 
cytotoxicity of modified thymidine derivatives. 
Childhood T acute lymphoblastic leukemia and 
non-small cell lung cancer -3 stages were predicted 
to suggest the maximum nontoxic bioactive drug 
molecule. It was evident from prediction Table 8 
that thymidine derivatives 2–11 showed 0.50 < Pa 
< 0.52 for lymphoblastic leukemia, 0.50 < Pa < 
0.56 lung cancer. There is a clear concept from the 
predicted data that these molecules have an equal 
potentiality to work against both of the cancer cells. 
Derivatives 3–8 exhibited the same types of activity 
(Pa ¼ 0.505) and (Pa ¼ 0.568) in spite of having a 
different aliphatic chain. Finally, derivative 11 
which has a tri-phenyl ring revealed a 
comparatively higher activity (Pa ¼ 0.523) in both 
predictions. We hope to conduct such studies for a 
more drug-related validation of these promising 
thymidine derivatives. 

CONCLUSION 

In conclusion, several thymidine derivatives 
were successfully analyzed in silico for their 
antimicrobial, thermodynamic, molecular docking, 
pharmacokinetic, and drug-likeness properties. 
Quantum mechanical (QM) calculations of all the 
thymidine derivatives were performed to determine 
the thermodynamic parameters, atomic partial 
charge, and molecular electrostatic potential which 
revealed that insertion of aliphatic chains and 
halobenzoyl ring increased the stability of the 
thymidine derivatives. PASS prediction values of 
the thymidine derivatives 2–11 were Pa < 0.51 in 
antibacterial, Pa < 0.76 in antifungal, Pa < 0.77 in 
antiviral and Pa < 0.83 in anti-carcinogenic activity 
which revealed the antimicrobial potency of the 
modified derivatives. Molecular docking was 
employed to suggest the best antibacterials against 
E. coli (1TR7). Thymidine derivatives showed an
interesting range of binding affinity -6.0 to -6.9
kcal/mol and strong interactions with at least one of
the catalytic residues (Tyr48, Tyr137, Ile13, Ile52,
Asp47, Asp54, Asp140, Asn46, Asn135, and
Gln133) of the lectin FimH (1TR7). These
derivatives showed several non-covalent
interactions, such as hydrogen bonding,
hydrophobic, and electrostatic interactions. These
blind molecular docking analyses may provide a
potential approach for the application of
antibacterial drugs as expected inhibitors of E. coli
protein lectin FimH. The docking validation
process revealed that RMSD is in the standard
range. Visual inspection exhibited very convincing
results in the molecular docking validation process.

In fine, these derivatives were analyzed for their 
pharmacokinetic properties which expressed that 
the combination of cytotoxic prediction, in silico 
ADMET prediction, and drug-likeness had shown 
promising results because the newly designed 
molecules have improved kinetic parameters and 
maintain all drug-likeness rules, as well as an 
interesting result in terms of biological activity. So, 
it could be concluded that most of the selected 
antibacterials showed promise and can be used to 
design effective antibacterial drugs against E. coli 
protein lectin FimH. More drug-likeness in vitro 
and in vivo studies such as nontoxic concentration 
towards healthy cells may be conducted in the near 
future. 
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